

Roll No.

--	--	--	--	--	--	--	--	--	--

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech. (Electrical Engg./ECE) (2018 Batch) (Sem.-2)

MATHEMATICS-II

Subject Code : BTAM-202-18

M.Code : 76255

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B & C have FOUR questions each.
3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B & C.

SECTION-A

I. Answer briefly :

- a) Check whether the given equation is exact and obtain the general solution :

$$(1+x^2)dy + 2xydx = 0$$

- b) Solve the differential equation $(x-a)dy/dx + 3y = 12(x-a)^3$; $x > a > 0$.
- c) Find the solution of the differential equation $y'' + 2y' + 2y = 0$.
- d) Find a differential equation of the form $ay'' + by' + cy = 0$, for which e^{-x} and xe^{-x} are solutions.
- e) Solve the differential equation $y''' + 32y'' + 256y = 0$
- f) Write a short note on initial value problems.
- g) Find the interval in which the root of equation $x^3 - x - 11 = 0$ lies.
- h) Write a short note on Bisection method.
- i) Define transcendental equation.
- j) Find the polynomial which takes following data $(0, 1), (1, 2)$ and $(2, 1)$.

2.

SECTION-B

2. i) Find the integrating factor and hence solve $(5x^3 + 12x^2 + 6x^3) dx + 6xy dy = 0$
 ii) Solve the differential equation $dy/dx - y = y^2 (\sin x + \cos x)$.
3. i) Find a homogeneous linear differential equation with real coefficients of lowest order which has the $xe^{-x} + e^{2x}$ as the particular solution.
4. Find the general solution of the equation $(D^2 + 9)y = x e^{2x} \cos x$,
 variation of parameters.
5. Find the general solution of the equation $x^2 y'' + 5xy' - 5y = 24x \ln x$.

SECTION-C

6. Use Newton iterative method to find the root of equation $3x - \cos(x) + 1$, by taking initial guess 0.6.
7. Solve the following equations by elimination method $2x + y + z = 10$, $3x + 2y + 3z = 18$ and $x + 4y + 9z = 16$.
8. Using Newton's forward formula, find value of $f(1.6)$, if:
- | | | | | |
|--------|------|------|------|-----|
| x | 1 | 1.4 | 1.8 | 2.2 |
| $f(x)$ | 3.49 | 4.82 | 5.96 | 6.5 |
9. Using Runge-Kutta method of order 4, find $y(0.2)$ for the equation $y = (y - x)/(y + x)$
 $y(0) = 1$, take $h = 0.2$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

1. (a) Check whether the given equation is exact and obtain the general solution.

$$(1+x^2) dy + 2xy dx = 0$$

(b) Comparing given equation with $M dx + N dy$

$$M = 2xy$$

$$\frac{\partial M}{\partial y} = 2x \quad \frac{\partial N}{\partial x} = 2x$$

\therefore given equation is exact.

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

In general solution:

$$\int M dx + \int \text{terms of } N \text{ which do not contain } dy = C$$

constant

$$\int 2xy \, dx + \int 1 \, dy = C$$

y constant $x^2 y + y = C$ is the required general solution

b) solve the differential equation:

$$(x-a) \frac{dy}{dx} + 3y = \lg(x-a)^3, \quad x > a > 0$$

Given eq. can be written as

$$\frac{dy}{dx} + \frac{3}{x-a} y = \lg(x-a)^2$$

which is of the form $\frac{dy}{dx} + Py = Q$

$$P = \frac{3}{x-a} \quad Q = \lg(x-a)^2$$

$$\text{I.F.} = e^{\int P dx} = e^{\int \frac{3}{x-a} dx} = e^{3 \log(x-a)}$$

$$y(x-a)^3 = \int 12(x-a)^5 dx + C$$

$$y(x-a)^3 = 12 \frac{(x-a)^6}{6} + C$$

which is the required solution.

c) find the solution of the differential equation

$$y'' + 2y' + 2y = 0$$

1. Auxiliary eq of given differential equation

$$m^2 + 2m + 2 = 0$$

$$m = -\frac{2 \pm \sqrt{4-8}}{2}$$

$$= -\frac{2 \pm 2i}{2} = 1 \pm i$$

$$c-f is y = e^x (c_1 \cos x + c_2 \sin x)$$

which is the required solution.

2) find a differential equation of the form $ay'' + by' + cy = 0$ for which e^{-x} and xe^{-x} are solutions.

sol. $y = e^{-x}$ is solution of $ay'' + by' + cy = 0$

$$y' = -e^{-x}, \quad y'' = e^{-x}$$

put in ①

$$ae^{-x} - be^{-x} + ce^{-x} = 0$$

$$e^{-x}(a-b+c) = 0$$

$$\therefore a-b+c = 0$$

$$\frac{dy}{dx} = -xe^{-x} + e^{-x} \Rightarrow e^{-x}(1-x)$$

$$\frac{dy}{dx} = -(1-x)e^{-x} + e^{-x}(-1) = e^{-x}(x-2)$$

in ①

$$e^{-x}[a(x-2) + b(1-x) + cx] = 0$$

$$ax - 2a + b - bx + cx = 0 \quad [\because e^{-x} \neq 0]$$

$$x(a-b+c) = 2a - b$$

$$\text{by ②} \quad 2a - b = 0 \Rightarrow b = 2a$$

$$a-b+c = 0$$

$$a-2a+c = 0 \Rightarrow a = c$$

put in ①

$$ay'' + 2ay' + ay = 0$$

$$a(y'' + 2ay' + ay) = 0$$

$$\underset{a \neq 0}{ay'' + 2ay' + ay = 0} \Rightarrow y'' + 2y' + y = 0$$

which is the required differential eq.

• Solve the differential equation

$$y''' + 3y'' + 25y' = 0$$

Given eq. can be written as

$$(D^3 + 3D^2 + 25D) y = 0$$

$$\text{put } D^2 = t$$

$$(t^2 + 3t + 25) y = 0$$

$$t^2 + 3t + 25 = 0$$

$$(t + 16)^2 = 0$$

11

$$y = e^{0x} ((c_1 + c_2 x) \cos 4x + (c_3 + c_4 x) \sin 4x)$$

which is the required solution.

- f) write a short note on initial value problem.
- Sol. An initial value problem is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain.
- g) find the interval in which the root of equation $x^3 - x - 11 = 0$ lies.
- Sol. The given equation is $x^3 - x - 11 = 0$
- let $f(x) = x^3 - x - 11$
- $f(1) = -11 < 0$
- $f(2) = -5 < 0$
- $f(3) = 13 > 0$
- \therefore root of equation $x^3 - x - 11 = 0$ lies in the interval $(2, 3)$
- h) write a short note on bisection method.
- Sol. Bisection method for finding the root of the equation $f(x) = 0$ is based on the repeated application of intermediate value theorem which states that if f is a continuous function on the interval $[a, b]$ and $f(a)$ and $f(b)$ have

If the equation $f(x) = 0$ involves transcendental function such as e^x , $\sin x$, $\log x$ etc then it is called transcendental equation. eg - $x^2 - \cos x = 0$

j) Find the polynomial which takes following data $(0, 1), (1, 2), (2, 1)$

<u>x</u>	<u>y</u>	Δy	$\Delta^2 y$
0	1		
1	2	1	-2
2	1	-1	

Here $x_0 = 0$, $y_0 = 1$, $\Delta y_0 = 1$, $\Delta^2 y_0 = -2$

$$h = 1$$

$$p = \frac{x - x_0}{h} = \frac{x - 0}{1} = x$$

Newton's forward difference formula

By

$$y(x) = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0$$

$$y(x) = 1 + x(1) + \frac{x(x-1)}{2} (-2)$$

$$y(x) = 1 + x - x^2 + x$$

$$y(x) = -x^2 + 2x + 1$$

and the integrating factor and hence solve

$$(5x^3 + 12x^2 + 6y^2)dx + 6xy dy = 0$$

$$M = 5x^3 + 12x^2 + 6y^2$$

$$N = 6xy$$

$$\frac{\partial M}{\partial y} = 12y, \quad \frac{\partial N}{\partial x} = 6y$$

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{12y - 6y}{6xy} = \frac{6y}{6xy} = \frac{1}{x} \quad \text{which is a function of } x \text{ alone}$$

$$I.F = e^{\int \frac{1}{x} dx} = e^{\log x} = x$$

Multiply x with given Differential Equation
 $(5x^4 + 12x^3 + 6xy^2)dx + 6x^2y dy = 0$

$$\frac{\partial M}{\partial y} = 12xy \quad \frac{\partial N}{\partial x} = 12xy$$

\therefore equation is exact

$\int M dx + \int (\text{terms of } N \text{ which do not contain } x) dy = C$

$$\int (5x^4 + 12x^3 + 6xy^2)dx + \int 0 dy = C$$

constant
 $x^5 + 3x^4 + 3x^2y^2 = C$ is the required general solution.

ii) Solve the differential equation

$$\frac{dy}{dx} - y = y^2(\sin x + \cos x)$$

$\frac{dy}{dx} = \sin x + \cos x$

Dividing both sides by y^2

$$y^{-2} \frac{dy}{dx} - y^{-1} = (\sin x + \cos x)$$

Put $y^{-1} = z$

$$-y^{-2} \frac{dy}{dx} = \frac{dz}{dx}$$

$$-\frac{dz}{dx} - z = \sin x + \cos x$$

$$\frac{dz}{dx} + z = \sin x + \cos x$$

which is of the form $\frac{dy}{dx} + py = q$,
i.e. linear linear equation.

$$I.F = e^{\int pdx} = e^x$$

$$ze^x = \int (e^x \sin x + e^x \cos x) dx + c$$

$$ze^x = e^x(-\cos x) + \int e^x(-\cos x) dx + \int e^x \cos x dx + c$$

$$ze^x = -e^x \cos x + c$$

$$y^{-1} e^x = -e^x \cos x + c \text{ is the required general solution}$$

3. i) find a homogeneous linear differential equation with real coefficients of lowest order which has the $x e^{-x} + e^{2x}$ as the particular solution.

Sol. Particular solution is $x e^{-x} + e^{2x}$

$\therefore -1$ is repeated 2 times

roots of D are $-1, -1, 2$

$$(D^2 + 2D + 1)(D - 2) = 0$$

$$D^3 - 2D^2 + 2D^2 - 4D + D - 2 = 0$$

$$D^3 - 3D - 2 = 0$$

$$(D^3 - 3D - 2)y = 0$$

$$\frac{d^3y}{dx^3} - 3 \frac{dy}{dx} - 2y = 0$$

ii) Using differential operator find general solution of $(D^2 + 9)y = x e^{2x} \cos x$

$$\text{S.O. } D^2 + 9 = 0 \Rightarrow D = \pm 3i$$

$$\text{C.F. } y = C_1 \cos 3x + C_2 \sin 3x$$

$$\text{P.I. } \frac{1}{D^2 + 9} x e^{2x} \cos x$$

$$= e^{2x} \frac{1}{(D+2)^2 + 9} x \cos x = e^{2x} \frac{1}{D^2 + 4 + 4D + 9} x \cos x$$

$$= e^{2x} \frac{1}{D^2 + 4D + 13} x \cos x$$

$$= e^{2x} \left\{ x \cdot \frac{1}{D^2 + 4D + 13} \cos x + \frac{d}{dD} \left(\frac{1}{D^2 + 4D + 13} \right) \cos x \right\}$$

$$= e^{2x} \left[x \cdot \frac{1}{D^2 + 4D + 13} \cos x + \frac{-(2D+4)}{(D^2 + 4D + 13)^2} \cos x \right]$$

$$\text{put } D^2 = -1$$

$$= e^{2x} \left\{ x \cdot \frac{1}{4D + 12} \cos x - \frac{2D + 4}{(4D + 12)^2} \cos x \right\}$$

$$\begin{aligned}
 & \int \frac{e^{2x} \left[\frac{x}{16D^2 - 144} \cos x - \frac{1}{16D^2 + 144 + 96D} \right]}{e^{2x} \left[\frac{(4D-12) \cos x - (8D+4) \sin x}{-160} \right]} \\
 &= e^{2x} \left[-\frac{x}{160} (4D-12) \cos x - \frac{(8D+4)(96D-144) \cos x}{9616D^2 - 16384} \right] \\
 &= e^{2x} \left[-\frac{x}{160} \left[4D \cos x - 12 \cos x \right] - \frac{(192D^2 - 356D + 384D - 512) \cos x}{24050} \right] \\
 &= e^{2x} \left[-\frac{x}{160} \left[-4 \sin x - 12 \cos x \right] - \frac{(192D^2 + 128D - 512) \cos x}{26050} \right] \\
 &= e^{2x} \left[-\frac{x}{160} \left[-4 \sin x - 12 \cos x \right] - \frac{(-192 \cos x - 128 \sin x - 512 \cos x)}{26050} \right] \\
 &= e^{2x} \left[-\frac{x}{160} (-4 \sin x - 12 \cos x) + \frac{192 \cos x + 128 \sin x + 512 \cos x}{26050} \right]
 \end{aligned}$$

Complete solution is C.F + P.I.

$$\begin{aligned}
 y &= C_1 \cos x + C_2 \sin 3x + e^{2x} \left[-\frac{x}{160} (-4 \sin x - 12 \cos x) \right. \\
 &\quad \left. + \frac{192 \cos x + 128 \sin x + 512 \cos x}{26050} \right]
 \end{aligned}$$

4. Find the general solution of equation

$y'' + 16y = 32 \sec 2x$ using the method of variation of parameters.

Sol. Given equation in symbolic form

$$(D^2 + 16)y = 32 \sec 2x$$

$$A \cdot E \quad D^2 + 16 = 0 \Rightarrow D = \pm 4i$$

$$C.F. \quad y = C_1 \cos 4x + C_2 \sin 4x$$

$$h = \begin{vmatrix} \sin \theta & \cos \theta \\ \sin \phi & \cos \phi \end{vmatrix} = \begin{vmatrix} \sin \theta & \cos \theta \\ \sin \phi & \cos \phi \end{vmatrix} = \alpha$$

$$P.I. = u y_1 + v y_2 \text{ where } u = - \int \frac{y_2 X}{W} dx \text{ and}$$

$$V = \int \frac{dy}{dx}$$

$$P.I. = -\cos 4x \int \frac{\sin 4x \cdot 32 \sec 2x}{4} dx + \sin 4x \int \frac{\cos 4x \cdot 32 \sec 2x}{4} dx$$

$$= -8 \cos 4x \int 2 \sin 2x \cos 2x \cdot \frac{1}{\cos 2x} dx +$$

$$\sin y \times \int \frac{8 \cos^2 x - 1}{\cos 2x} dx$$

$$= -16 \cos 4x \int \sin 2x \, dx + \sin 4x \int 8 \cos 2x - 8 \sin 2x \, dx$$

$$= -16 \cos 4x \left[-\frac{\cos 2x}{2} \right] + 8 \sin 4x \left[\frac{2 \sin 2x}{2} - \frac{\log(\sec 2x + \tan 2x)}{2} \right]$$

$$= 8 \cos 4x \cos 2x + 8 \sin 4x \sin 2x - 4 \sin 4x \tan(\sec x + \tan x)$$

$$= 8 \cos(4x - 2x) - 4 \sin 4x \log(\sec 2x + \tan 2x)$$

$$= 8 \cos 2x - 4 \sin 4x \log(\sec 2x + \tan 2x)$$

$$C.S = C.F + P.I.$$

$$y = a \cos 4x + b \sin 4x + c \cos 2x - d \sin 2x$$

$$= \frac{a}{2} \sec 2x + \frac{b}{2} \tan 2x$$

$x_{hs} = h_5 - h_5 + h_2 x$ 由上式得 x_{hs} 为

1. Symbolic form of given equation is

use Newton Raphson method to find the root of equation $3x - \cos x + 1 = 0$ by taking initial guess 0.6

Q. Let $f(x) = 3x - \cos x + 1$
 $f'(x) = 3 + \sin x$
 $x_0 = 0.6$

Iteration 1 $\rightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

$$x_1 = 0.6 - \frac{3(0.6) - \cos(0.6) + 1}{3 + \sin(0.6)}$$

$$= 0.6 - \frac{1.8 - 0.82533 + 1}{3 + 0.56464}$$

$$= 0.6 - \frac{1.97467}{3.56464} = 0.6 - 0.55396$$

$$x_1 = 0.04604$$

Iteration 2 $\rightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

$$x_2 = 0.04604 - \frac{3(0.04604) - \cos(0.04604) + 1}{3 + \sin(0.04604)}$$

$$= 0.04604 - \frac{0.13812 - 0.99994 + 1}{3 + 0.04602}$$

$$= 0.04604 - \frac{0.13918}{3.04602} = 0.04604 - 0.04589$$

$$x_2 = 0.00035$$

$$z = 0.00035 - \frac{b'(a_0)}{3.00035} = 0.00035 - 0.00035$$

$$= 0$$

root of given equation is $x = 0$

4. solve the following equations by elimination method
 $x + y + z = 10$, $3x + 2y + 2z = 18$
 and $x + 4y + 9z = 16$

Q. $[A|B] = \left[\begin{array}{ccc|c} 2 & 1 & 1 & 10 \\ 3 & 2 & 3 & 18 \\ 1 & 4 & 9 & 16 \end{array} \right]$

$$R_1 \rightarrow R_3$$

$$\sim \left[\begin{array}{ccc|c} 1 & 4 & 9 & 16 \\ 3 & 2 & 3 & 18 \\ 2 & 1 & 1 & 10 \end{array} \right]$$

$$R_2 \rightarrow R_2 - 3R_1, \quad R_3 \rightarrow R_3 - 2R_1$$

$$\sim \left[\begin{array}{ccc|c} 1 & 4 & 9 & 16 \\ 0 & -10 & -24 & -30 \\ 0 & -7 & -17 & -22 \end{array} \right]$$

$$R_2 \rightarrow -\frac{1}{10}R_2$$

$$\sim \left[\begin{array}{ccc|c} 1 & 4 & 9 & 16 \\ 0 & 1 & \frac{24}{10} & 3 \\ 0 & -7 & -17 & -22 \end{array} \right]$$

$$R_3 \rightarrow R_3 + 7R_2$$

$$\sim \left[\begin{array}{ccc|c} 1 & 4 & 9 & 16 \\ 0 & 1 & 2.4 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

$$\left[\begin{array}{ccc|c} 1 & 4 & 9 & 16 \\ 0 & 1 & 24/10 & 3 \\ 0 & 0 & 1 & 5 \end{array} \right]$$

$$z = 5$$

$$y + \frac{24}{10}z = 3$$

$$y + 12 = 3 \Rightarrow y = -9$$

$$\begin{aligned} x + 4y + 9z &= 16 \\ x - 36 + 45 &= 16 \end{aligned}$$

$$x = 7$$

$$\bullet x = 7, y = -9, z = 5$$

8. Use Newton's forward formula, find value of

$$f(1.6)$$

$$\begin{array}{ccccc} x & 1 & 1.4 & 1.8 & 2.2 \\ f(x) & 3.49 & 4.82 & 5.96 & 6.5 \end{array}$$

$$\begin{array}{ccccc} x & f(x) & \Delta f(x) & \Delta^2 f(x) & \Delta^3 f(x) \\ \text{Sol.} & 3.49 & 1.33 & -0.19 & -0.41 \\ & 1 & 1.33 & -0.19 & -0.41 \\ & 1.4 & 4.82 & 1.14 & -0.6 \\ & 1.8 & 5.96 & 0.54 & \end{array}$$

$$\begin{array}{ccccc} x & f(x) & \Delta f(x) & \Delta^2 f(x) & \Delta^3 f(x) \\ \text{Sol.} & 3.49 & 1.33 & -0.19 & -0.41 \\ & 1 & 1.33 & -0.19 & -0.41 \\ & 1.4 & 4.82 & 1.14 & -0.6 \\ & 1.8 & 5.96 & 0.54 & \end{array}$$

$$2.2 \quad 6.5$$

$$\begin{aligned} x_0 &= 1, y_0 = 3.49, \Delta y_0 = 1.33, \Delta^2 y_0 = -0.19, \\ \Delta^3 y_0 &= -0.41, h = 0.4, \beta = \frac{x - x_0}{h} \end{aligned}$$

$$\beta = \frac{x-1}{0.4}$$

$$\begin{aligned}
 &= y_0 + h \Delta y_0 + \frac{h(p-1)}{12} \Delta^2 y_0 + \frac{h(p-1)(p-2)}{24} \Delta^3 y_0 \\
 &= 3.49 + \frac{(x-1)}{0.4} (1.33) + \frac{(x-1)}{0.4} \left(\frac{x-1}{0.4} - 1 \right) (-0.19) \\
 &\quad + \frac{(x-1)}{0.4} \left(\frac{x-1}{0.4} - 1 \right) \left(\frac{x-1}{0.4} - 2 \right) (-0.41) \\
 &\quad \frac{6}{6}
 \end{aligned}$$

$$\begin{aligned}
 f(1.6) &= 3.49 + \frac{(1.6-1)}{0.4} (1.33) + \frac{(1.6-1)}{0.4} \left(\frac{1.6-1}{0.4} - 1 \right) (-0.19) \\
 &\quad + \frac{(1.6-1)}{0.4} \left(\frac{1.6-1}{0.4} - 1 \right) \left(\frac{1.6-1}{0.4} - 2 \right) (-0.41) \\
 &= 3.49 + 1.4995 - 0.071 + 0.026 = 5.44
 \end{aligned}$$

9. Using Runge-Kutta method of order 4, find $y(0.2)$ for the equation $y = \frac{y-x}{(y+x)^2}$

$$y(0) = 1, \text{ take } h = 0.2$$

$$y = \frac{y-x}{\frac{dy}{dx} + 1} \Rightarrow 1 + \frac{dy}{dx} = \frac{y-x}{y}$$

$$\begin{aligned}
 \frac{dy}{dx} &= \frac{y-x}{y} - 1 \Rightarrow \frac{dy}{dx} = \frac{y-x-y}{y} \\
 \frac{dy}{dx} &= -\frac{x}{y}
 \end{aligned}$$

$$\begin{aligned}
& h f(x_0, y_0) = 0.2 \left(-\frac{0}{1} \right) = 0 \\
& k_1 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) \\
& = 0.2 f\left(0 + \frac{0.2}{2}, 1 + \frac{0}{2}\right) = 0.2 f(0.1, 1) \\
& = 0.2 \times -\frac{0.1}{1} = -0.02 \\
k_3 & = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) \\
& = 0.2 f\left(0 + \frac{0.2}{2}, 1 - \frac{0.02}{2}\right) = 0.2 f(0.1, 0.99) \\
& = 0.2 \times -\frac{0.1}{0.99} = -0.0202 \\
k_4 & = h f\left(x_0 + h, y_0 + k_3\right) \\
& = 0.2 f\left(0 + 0.2, 1 + (-0.0202)\right) \\
& = 0.2 f(0.2, 0.9798) \\
& = 0.2 \times -\frac{0.2}{0.9798} = -0.0408 \\
y_1 & = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) \\
& = 1 + \frac{1}{6} (0 + 2(-0.02) + 2(-0.0202) + (-0.0408)) \\
& = 1 + \frac{1}{6} (-0.04 - 0.0404 - 0.0408) \\
& = 1 - \frac{0.1212}{6} = 1 - 0.0202 = 0.9798 \\
\therefore y(0.2) & = 0.9798
\end{aligned}$$